ビスフェノールAアクリレート/エポキシド ハイブリッド構造を有する相互貫入高分子材料の創製

徳島大学大学院

先端技術科学教育部博士後期課程 システム創生工学専攻光システム工学コース 香 川 映 二

1

目次

- 第1章 緒言
- 第2章 モノマー及びポリマーの合成と分析
- 第3章 ポリマーの特性評価
 - 3-1 光学的特性
 - 3-2 物理的特性
 - 3-3 熱的特性

第4章 結論

第1章 緒言

現代は情報伝達の時代といわれ、コンピュー タや情報機器に使用される電子機器が、この 時代を担っている。その基幹となる電子回路 はより高密度、高集積、精細化されている。 このことは、ムーアの法則によって示されて いる。

ムーアの法則は、CPUや半導体メモリーなど のシリコン集積回路の密度(単位体積あたりの 素子数)が急激に増大することを表している。

具体的には、精細化度が1年半で2倍、3年で 4倍、という割合で増えていき、加工および制 御技術は長足の進歩を示している。

有機材料においては

ニ次元 ポリイミド, ポリカーボネート 熱可塑. 三次元 エポキシ,アクリル,シリコーン,アリル etc

反応性が高く、容易に重合体を与える素材 但し単独では、物理的特性が不足 材料物性向上の一手法 相互貫入ポリマー(Interpenetrating Polymer Networks,IPN)

IPN Frish エポキシ/ポリアクリレート Pernice エポキシ/ウレタン

の同時重合

競争的に反応が起きる 分子量及び分子鎖の絡まりが不足 物理的特性の向上にはならない

- 1. 理想的なIPN構造
- 2. 見かけのIPN
- 3. 擬似IPN

(d)絡まり

高分子間の網目の重なり 何らかの形で化学結合 直鎖ポリマーと架橋ポリマー との絡まり

屈曲部の絡まり構造

伊保内 化学工業12月(1984)

Fig.2 Schematic view of IPN structures

独立した官能基での反応機構

官能基の選択、バックボーン、IPN構造の構築

官能基; アクリル基 ラジカル重合 エポキシ基 イオン重合 構造; ビスフェノールA

同一分子中に異種官能基を有すること

第2章 モノマー及びポリマーの合成と分析

R' CH2=CH ,R aromatic ; aliphatic

Scheme1 Reaction between epoxide and carboxylic acid

エステル化

Scheme11 Synthesis of aliphatic alcohol type epoxide

エステル化触媒

- ① 第4級ホスホニウム塩
- ② フォスフィン誘導体
- ③ 第4級アンモニウム塩

高純度化が達成される

フェノール性水酸基のエポキシ化

Scheme9 Synthesis of PGE

最適条件を求めることにより高純度化が可能。 用途により、分子蒸留が可能。より高純度化が達成される。 使用した化合物一覧

Fig.3 Stuctures of compoounds used

Table	Preparatio	on of monomers.
-------	------------	-----------------

\mathbf{M} onomer.	Feed com	position (g),	TEBAC be	Yield₀	
code⊬	3ª. Acrylic acidª.		(g) _₽	(%) * ³	
2₊	173 (1.0).	$86.4~(1.2)_{v}$	1.03.	98₽	
M9~	173 (1.0),	64.8 (0.9) _v	0.95.	95₽	
M8₽	173 (1.0).	57.6 (0.8) ₽	0.85₽	95₽	
M7∘	173 (1.0).	50.4 (0.7) _*	0.74₀	98.	
M6₊	173 (1.0).	43.2 (0.6) _*	0.64~	98.	
M5₽	173 (1.0).	36.0 (0.5) _°	0.53.	98.	
M4~	173 (1.0),	28.8 (0.4).	0.43.	98¢	

 $\frac{b}{c}$ TEBAC denotes a triethylbenzylammonium chloride used as an esterification catalyst.

Table1 Preparation of monomers

Monomer₊	Monomer	Composition	n (mol%) a _e	Epoxy equivalent b [g/equi.].			
code₊	1,,	2∻	3 ₽	Obse	erved₊	Calcd _€	¢
2⊷	0.00	100.0~	0.00	043	043	0.0	¢
M943	19.7.	80.3.	0.00	2408.	2385.	2384.	ę
M8.	32.3.	64.2_{e}	3.5₽	1173 _°	1160.	1156.	ę
M7∘	38.5-	51.50	10.04	753 _°	7 55₀	747 ₽	ę
M6.	47.3₽	37.2.	15.5.	5 68.	546.	538.	φ
${ m M5}_{*}$	50.2₽	26.6	23.2₽	420.0	429.	419.	φ
M4*'	53.0 _°	12.4.	34.6₽	330.	324.	319.	ę
3₽	0.00	0.00	100.04	173.	173.	170.	 ₽

Table 2Composition and epoxy equivalent of monomers

^a Monomer composition was determined by HPLC under the condition shown in the text.

^b The front and rear numbers in the observed values were determined by titration and HPLC experiments respectively, and the calculated EE values were estimated in the hypothesis of a complete acrylation using pure reactants.

Fig. 14 HPLC analysis of monomer

Elution time (min)

モノマー(1)の¹H-NMR

モノマー(2)および(4)の¹H-NMR

Fig.ure ¹H-NMR spectrum of Monomer(4) in CDCl₃ at r.t..

Fig.7 Composition of 1,2, and 3 in M9~M4

ポリマーの合成

モノマーM9~4/アクリル系希釈剤モノマー4 20wt%光開始剤、及び 2-エチル-4-メチルイミダゾール 1wt%

第一段階 光硬化 Pre-IPN 第二段階 熱硬化 IPN

			_
名称₽	イルガキュア [®] 500⊬	イルガキュア [®] 651₽	÷
	ラジカル系 光重合開始剤↩	ラジカル系 光重合開始剤↩	
	(イルガキュア®184、ベンゾフェノン混合)。	(ベンジルジメチルケタール)。	
化学名↔	A:1-ヒドロキシ-シクロヘキシル-+	2,2-ジメトキシ-1、+	+
	フェニル・ケトン(5)。	2-ジフェニルエタン-1-オン(7)。	
	B:ベンゾフェノン(6)。		
化学構造式。	A OH B $A: B = 1:1$	0 OCH ₃ OCH ₃ ∂7⊈: 256.3	÷
吸収特性↓ (アセトニトリル溶液中)↓	Extinction 2 15 15 15 15 15 15 15 15 15 15	Extinction 2 15 15 15 15 15 15 15 15 15 15	-

Figure Irugacures^R 500 and 651

Scheme Generation of primary radical for (7)

Scheme Generation of primary radical for (5, 6)

23

Scheme Mechanism of radical polymerization

半定性ではあるが、810cm⁻¹の吸光度比から<u>UV吸収強度は約87%減少を示した。</u> UV照射後エポキシ基914cm⁻¹の吸収は変化せず、エポキシ基の残存が確認された。 25

Figure Time-conversion curves for epoxy polymerization of Pre-IPN(M4) with 2-ethyl-4-methylimidazole by (left curve) microwave irradiation and (right carve) heating in an oven at 100°C. Polymerization condition: [imidazole] = 0.5 (upper)and 1.0 wt%(lower) with respect to the total amount of M4 and **4**.

Scheme Catalytic role of 2E4MZ for PGE

Figure Representation of mixture 1,2,3

Blue: Monomer **2,4** acrylic terminated monomers

Blue and red (Monomer 1): Acrylic & epoxy terminated monomer

Red (Monomer 3): Epoxy terminated monomer

Figure Representation of Pre-IPN

エポキシノボラック樹脂の単純混合物とハイブリッドモノマーの創製

① 単純モノマー混合物: ENE + ENA, 1:1(w/w)
 ② ハイブリッドモノマー: ENEA

硬化条件; 2段硬化(UV照射による光硬化+オーブンによる熱硬化)

Figure SEM photograph of fracture surface of ENEA

Figure SEM photograph of fracture surface on cured resin of ENE/ENA mixture

ハイブリッドモノマーは系に相溶性と均質性を与える。

第3章 ポリマーの特性評価

3-1 光学的特性

透過率 VS ジェポキシ含有量

Figure Effect of monomer 3 content on transmittance of IPNs (M9-M4)

${\bf Table} \qquad {\rm Refractive\ index\ of\ monomers,\ Pre-IPNs\ and\ IPNs_{+}}$

\mathbf{Sample}_{e}	Refractive index $_{\!}$	\mathbf{Sample}_{*} Re		fractive index.	$\mathbf{Sample}_{\scriptscriptstyle{arphi}}$	Refractive index.	
2_{e^2}	1.547.			نه — نه —		IPN(2)	∘ <u>1.571</u> ₀
M9.	1.549.	Pre-IPN(M	[9) ₽	$1.572_{ m e}$	IPN(M9)₀ 1.573₀	
M8₽	1.551.	Pre-IPN(M	[8),	1.578₽	IPN(M8)₀ 1.577₀	
M7₽	$1.552_{ m e}$	Pre-IPN(M7),		1.573₽	IPN(M7)₀ 1.575₀	
M6₊ [,]	1.553.	Pre-IPN(M	[<mark>6)</mark> ₽	1.574_{*}	IPN(M6)₀ 1.574₀	
M5₊	$1.553_{ m c}$	Pre-IPN(M	[5)₽	1.577_{*}	IPN(M5)₀ 1.578₀	
${ m M4}_{ m e^2}$	1.555_{e}	Pre-IPN(M	[4)₀	1.573_{e}	IPN(M4)₀ 1.577₀	
3 ₽	1.567e	ب —		ہ —	IPN(3)	¢ 1.585↓	

Pre-IPNとIPNとの屈折率の差、及び モノマーの組成比による屈折率の差は少ない。

3-2 物理的特性 Pre-IPNとIPNとの破断強度

① IPNとPre-IPNとの差異を示す。

- ② IPN(M9)~(M4)まで良好な破断強度を有する。
- ③ (M8)の時に破断強度の最大値を与える。 モノマー1,2,3比 32,3/64,2/3,5

34

ヤング率におけるPre-IPNとIPNとの差

Figure Temperature dependence of tan δ for INP(2), IPN(M8), IPN(M6), IPN(M4), IPN(M3) (peaks from left to right)

① IPNは単一ピークを示す。⇒ <u>明確な相分離がない</u>

アクリレート/エポキシとの混合物は2個のピークを示す。 ②エポキシ基の含有率が高い程tanδ最大値は高温側に移行する。 ③IPN(M8)~(M4)はIPN(2)からIPN(3)の領域に含まれる。 Fedors は溶解度パラメーターδ(cal^{0.5}cm^{-1.5})が凝 集エネルギー密度(ΔU, cal mol ⁻¹)、モル分子容 (ΔV, cm³ mol ⁻¹)の両方ともに置換基の種類及 び数に依存していると考え、式1を提案した。 式1によって求めたモノマー1, 2, 3, のδはそれぞ れ<u>10.3, 11.3及び9.0 cal^{0.5}cm^{-1.5}であった。</u>

equation(1)
$$\delta = \left[\frac{\Sigma \ \Delta \ U}{\Sigma \ \Delta \ V}\right]^{1/2}$$

equation(2)
$$\delta$$
(Monomer1) = $\left[\frac{\Sigma 93840}{\Sigma 372.1}\right]^{1/2}$ = 10.347

Figure δ of Monomer 1 by Fedors' equation

モノマー4のδ値

稀釈剤モノマー4のδ値は10.2でありモノマー1~3の値 に近く相溶性が良好なことが裏付けされる。

\mathbf{Sample}_{*}	Vickers hardness.	Shore D hardness.				
	(HV)₊	(HS)₽				
Pre-IPN(M9),	18.94	>90.0				
Pre-IPN(M8),	18.4_{\circ}	90.0				
Pre-IPN(M7),	15.9_{e}	85.				
Pre-IPN(M6),	13.90	81.0				
Pre-IPN(M5).	8.80	70₽				
Pre-IPN(M4),	4.10	40,,				

J.

 Table
 Surface hardness of Pre-IPNs

 Table
 Surface hardness of IPNs

\mathbf{Sample}_{*}	Vickers hardness₊ (HV)₊	Shore D hardness. (HS).
IPN(2),	19.1.	>90.0
IPN(M9).	21.2_{\circ}	>90.0
IPN(M8).	21.9.	>90.
IPN(M7)₀	21.7.	>90.
IPN(M6),	20.94	>90.
IPN(M5),	20.2.	>90.0
IPN(M4),	19.90	>90.0
IPN(3).	18.0.	>90+

Pre-IPNとIPNとのビッカース硬度

Figure Vickers hardness of Pre-IPNs and IPNs

Pre-IPNとIPNの差異を示す。
 Pre-IPNはエポキシ基が可塑性を示す。
 IPNはすべて良好なビッカース硬度を有する。

3-3 熱的特性

Table Glass transition temperature of IPNs								
Sample \circ IPN(2) \circ IPN(M9) \circ IPN(M8) \circ IPN(M7) \circ IPN(M6) \circ IPN(M5) \circ IPN(3) \circ								
	70.9 ₽	99.3₽	103.2~	104.2.	108.1 ₽	106.1 <i>₀</i>	111.1.	

Figure Weight loss *vs.* temperature for pre-IPNs M9–M4 (top to bottom)

Figure Weight loss vs. temperature for IPNs 3, M4, M6, M8, 2 (top to bottom)

①Pre-IPN中のエポキシ含有率が多いと重量損失大で、エポキシ含有量に相当する。 ②IPN中のエポキシ含有率が多いと重量損失温度が高い

結論

理想的なIPN構造を得るための、最適な重合を行なう異種官能 基、バックボーン及び重合法を検討した。

異種官能基 ラジカル重合; アクリル基 イオン重合; エポキシ基

バックボーン ビスフェノールA

同一分子内に異種重合基を有すること。 独立した2段階重合(光重合 ⇒ 熱重合)を行なう。

①ハイブリッド(モノマー1)を含む硬化物は、透明性、硬度、破断 強度及びヤング率等の物理的特性を向上させる。

②ハイブリッド(モノマー1)、ジアクリレート(モノマー2)及びジェ ポキシ(モノマー3)の組成比が、モノマー1と2との比が1対2で、 3の含有率が3.5%程度の少量の場合に、物理的特性、耐熱性 が特に優れ且つ透過率の高さと一致し、理想的なIPN構造に起 因するものと考えられる。